

Measuring Technical Efficiency and Capacity with Data Envelopment Analysis: A foundational

approach using the R programming language

John B. Walden*

NOAA/ NMFS/NEFSC

166 Water St. MB19

Woods Hole, MA 02543

508-495-4726

John.Walden@Noaa.Gov

Joe Atwood

Department of Agricultural Economics and Economics

Montana State University

P.O. Box 172920

Bozeman, MT 59717

jatwood@Montana.edu

*Senior authorship shared

1

mailto:jatwood@Montana.edu
mailto:John.Walden@Noaa.Gov

Introduction

Data Envelopment Analysis (DEA), originally introduced by Charnes, et al. (1978) has

become a popular analytical method for assessing efficiency, capacity, productivity and

conducting benchmarking studies. Along with Stochastic Frontier Analysis (SFA), DEA has

been used in an abundant and ever growing number of empirical studies over the last 40 years, in

a diverse number of fields (Daraio, et al., 2019). DEA models can be constructed and run using a

variety of software packages, such as GAMS, Excel, SAS, LINDO, along with some programs

which were specifically built for DEA models such as DEAP and FRONTIER. Since DEA

models are in reality linear programming (L.P.) models, any software which has an L.P. solver

can be used to solve DEA problems.

Over the past several years, the software product R has become popular, and a built-in

DEA and SFA package ‘Benchmarking’ has been developed that can easily be used to solve

DEA models. This workbook is designed to demonstrate how to build R programs to solve DEA

models for those who want to “build their own” rather than use the Benchmarking program.

There are several advantages to this approach. First and foremost, it gives analysts the ability to

customize their DEA models in whatever way they desire, and the ability to retrieve and display

whatever results they wish by directly using the LP solvers in R. Secondly, if new L.P. solvers

are incorporated into R, the programs could still be used with a few minor changes, potentially

improving solve times for complex problems. Thirdly, the approach outlined in this workbook

removes a layer for the modeler. Instead of using a package such as Benchmarking, or Fear (for

bootstrapping models), the user directly solves the problems in an LP framework.

2

The programs that we show are simplified versions of DEA models solved using the R

package lpSolve_API. We include the standard input and output oriented efficiency problem,

along with the Johansen capacity model and two directional distance function models. The first

directional distance function model expands outputs while contracting inputs, while the second is

one used for an environmental problem where efficiency is measured in terms of expanding

“desirable” outputs, while contracting “undesirable” outputs while leaving inputs unchanged. All

the models shown can be found in the book “Production Frontiers” (Fare, et al., 1994), or the text

“New Directions: Efficiency and Productivity” (Färe and Grosskopf, 2006). We also include a

bootstrap routine based on a sub-sample bootstrap model, which runs quite fast and gives

consistent bootstrap estimates. For each example, the mathematical formulation of the DEA

model in equation form is presented, followed by the matrix representation, and then the R code

used to generate the model. Some examples include the actual matrices that are used by the R

program for small problems using a subset of the original data. Results for the first five models,

along with a sample 10 observation data set are given in Appendix 2.

3

	
�

	
�

1.0 Input Oriented Technical Efficiency

Input oriented technical efficiency measures the ability of a firm to contract their inputs

given their desire to produce a certain output. Fare, et al. (1994) proposed the following DEA

model to measure input oriented technical efficiency with constant returns to scale (CRS;

page64):

�� = ����,
� . .��� ≤ ∑��� �����, � = 1,2, … � (1.1) ∑���� �� ��� ≤ ���, � = 1,2, . . , �,�� ≥ 0, = 1,2, … !.

Here, yjm is the quantity of output m produced by firm j, and xjn is the quantity of input n

used by firm j to produce output m. The zj term is an individual weight given to each firm, while

λ is the objective function value. Both z and λ are decision variables chosen by the model, which

is estimated once for each firm in the data. The model is solved in a loop once for each firm, and

returns a value that shows how much the firm needs to contract its inputs in order to be

considered efficient given its output level. This LP model can also be written as:

�� = ����,
� . .� ≤ �" (1.2) �# ≤ ��� ∈ ℜ&�

In order to put model 1.2 into a form that can be solved in R, we transpose the matrices, bring the

endogenous variable to the left hand side (LHS), and re-arrange some other terms giving:

4

�� = ����,	
�. . "(� ≥ �� (1.3) # (� −
�� ≤ 0 � ∈ * �
In matrix form, the LP model is shown below:

���� +0′ 1- . /
�. ."′ 0 � �≥ � (1.4) 0 1 . / . / 2 3#′ −� �
 ≤ 0� ≥ 0

This is equivalent to the linear programming problem ���45+�- = 6�, �78 96 : ;� ≤ 8.

R Code

The R program to calculate this model is shown in Appendix 1 (Program 1). The first

step taken in the program is to clear all values that might be in memory from previous versions,

and to read in the data (lines 1-26). We first set the working directory (line 13) and then read in

an external comma separated value (csv) file that is stored in that directory (line 14). Line 15

lists out the names of the columns from the .csv file that will be used in lines 19 and 21. In order

to test our code, and to provide intermediate results for this example that can be looked at easily,

we limit our model to only include the first 10 observations (line 17). Next, t he matrix containing

the inputs (X) is created on line 19, and the output (Y) matrix is created on line 21. Note for this

example, we are only using a single output. T hree variables M, N, and J are then created which

hold the number of columns in the Y and X matrices (M&N respectively, lines 23-24), a nd the

number of observations (J, line 25). The Y and X matrices are then combined to form a new

5

matrix, YX (line 26). This is the end of the data step, and this same code can be now used across

all DEA programs.

The next step is to create the A matrix for this particular problem. The A matrix is

initially created on line 30, and its values are set to zero. Note that the dimension of the A matrix

is M (#outputs) + N(#inputs) rows, and J+1(#observations+1) columns, and populated with

zeros. Values are then placed in the A matrix from the YX matrix using the transpose operator

(line 33). The transpose operator (tr) takes the 10 by 5 YX matrix (Figure 1) and fits it into the 5

by 11 A matrix (Figure 2). The first row of the YX matrix is now the first column on the A

matrix.

Next, the LP model is set up. First, the problem type is declared to be a minimization

(line 38). The objective function coefficients are set up in a vector that has dimension J, and is

filled with zeros, and then a single value of 1 (line 39). The (in)equality conditions for the inputs

and outputs are set in line 41, and then two values (nr and nc) are initialized based on the number

of rows and columns in the A matrix, respectively (lines 43-44). Control values for the

lpSolveAPI package are set in lines 47-48, and the values for the rows in the LP problem are set

in lines 50-52. Lines 53-54 set up variables that will hold the results from each run of the DEA

model.

A DEA model is solved once for each observation in the data, and is easily accomplished

using a looping construct (lines 56-68). The first step in the loop sets the values in the last

column of the A matrix, in the rows corresponding to the input values, equal to the negative

values of the inputs from the A matrix, column j (line 57). This corresponds to the matrix

representation of the problem shown in equation 1.4. The final A matrix when solving the DEA

model for observation #1 is shown in Figure 3. Note, the negative values in column 11

6

correspond to the values in column one. Line 58 sets the right hand side values in a vector

named rhs, and then passes that value to the solver in line 59. Line 60 sets the column values for

the solver and line 61 passes the objective function values to the solver. Line 64 solves the model

and passes the value for the solver status to the vector status, with a returned value of zero

indicating that the model solved optimally. This is important in order to check whether the model

solved at each iteration, or whether there were infeasibilities. The objective function value is

returned to the vector objvals (line 65), and these values are printed out on line 71. For larger

problems, another type of data structure may be needed to either hold, or print out the objective

function values to another application, such as a spreadsheet. Finally, line 67 prints out to the

screen which DMU is being solved so that for large problems it will be clear where the DEA

program is in terms of all the observations, and line 68 closes the for loop.

Data for 10 observations are shown in Appendix 2 (Figure 8), along with the results from

the input oriented CRS model (Figure 9). These are provided so that the interested reader can

check results from their DEA code written in R against these results. All results are rounded to

three decimal places.

1.1 Input oriented TE with VRS.

A variable returns to scale model requires a slight modification to the prior program, with the

addition of a convexity constraint as shown below:

�� = ����,	
�. ."′� ≥ ��
 #(� −
�� ≤ 0 !1(� = 1 � ≥ 0

(1.5)

7

 ���� +0′ 1- . /
�. ."′ 0 ≥ �� � (1.6) <#′ −��= . / >≤? > 0 ?
1′ 0 = 1� ≥ 0

In equation 1.5, J 1¢ is a Jx1 vector of ones. In matrix form, this model would be specified as:

As can be seen from model 1.6, the VRS problem requires an additional row in the A

matrix. The modification of the prior CRS model in R is shown in program 2, beginning on line

75. Here, we only present the changes from the prior R code, beginning with the reformulation of

the A matrix, as the data input steps remain the same. Lines 75-80 create the A matrix, populates

the cells in the matrix with the transformed YX, and adds a row of ones in order to incorporate

VRS (line 80). When the LP model is constructed in the next section, and additional equality

constraint is inserted into the character “rest” (line 84). The rhs value also needs to be modified

for each pass through the “for” loop with a value of one inserted into the rhs matrix (line 101).

Solving the model and collecting the objective function values is accomplished in lines 106-107.

This completes the modifications needed for the VRS model. The A matrix for this problem is

shown in figure 4.

Results for the 10 observation data set are shown in Figure 9 (Appendix 2). With this

model, most observations are considered efficient, with a value of 1.000 returned for seven

observations. This was expected given that VRS was imposed and the limited number of

observations.

8

	�

2.0 Output oriented technical efficiency with variable returns to scale

(VRS)

An output oriented DEA model expands output for each DMU while holding the level of

inputs fixed, and is estimated through the following L.P. problem, with vrs imposed:

�� = �@�A B,. ."(� − B� ≥ 0# (2.1) (� ≤ ��!1(� ≥ 0� = 1
This problem differs from the input oriented model in that output is being expanded through the

term θ, and it is a maximization problem, rather than a minimization problem. In matrix form,

this model would be:

��@� +0′ 1- . / B�. ."′ −�� ≥ 0� <#′ 0 = . / >≤? >�B �?1′ 0 = 1� ≥ 0
(2.2)

The R code for this output oriented program is shown in program 3 (Appendix 1).

Reading in the data and setting up the initial A matrix is done no differently than in programs 1

and 2. Since this is a maximization problem, the objective function type is set to “max” in line

121. The last column of the A matrix is set differently than in the input oriented program because

this is a maximization problem and the optimization is based on the M outputs. This is seen in

line 141, where the last column of the A matrix is set equal to the negative values from rows one

to M of observation j of the A matrix. The A matrix for the solving the first DEA problem for the

first observation is shown in Figure 5. The right hand side is set equal to the zero for the outputs,

9

	�

and to the value of the inputs for the inputs, and to one for the VRS constraint (line 142). The

remaining part of the program is the same as programs one and two.

Results for the output oriented model with VRS imposed are shown in Figure nine. Note

that in the output oriented example, all the results are greater or equal to one.

2.1 The Johansen Capacity Model

The Johansen capacity model has been used extensively over the past two decades to

estimate a physical measure of capacity and capacity utilization. It was operationalized by (Fare,

et al., 1989), and is a variation of the output oriented TE measure shown in the previous section.

The Johansen model is:

C@D = �@� ,4E,AB
(. ." #� − B� ≥ 0 F(� ≤ ��F (2.3) #G(� − �H = 0!1(� ≥ 0� = 1

In the above capacity model, the inputs are partitioned into two constraints, one for the

fixed factors (F) and the second for the variable factors (V). The fixed input constraint is the

same as found in the output oriented TE model shown in the previous section. For the variable

input constraint, xv is the optimal level of variable inputs and is returned by the model. This

constraint ensures that the variable inputs do not constrain output, rather the fixed factors do so,

which is consistent with the Johansen definition of capacity. The matrix form of the above set of

equations is:

10

��@� +0′ 0′ 1- 0�H1 B�. . "′ 0 −� � ≥ 0� (2.4) ⎛#(0 0 ⎞ ≤ �FF � Q⎜ ⎟ 0 H(1 O P O P #H −1′ 0 = 0B1′ 0 0 = 1⎝ ⎠� ≥ 0

As model 2.4 shows, the A matrix is now one row and one column greater (4 x 3) than the

previous output oriented TE model (3 x 2). There is also an additional row in the right hand side

to accommodate the variable input, and one in the vector describing the constraints. The R code

to estimate the Johansen capacity model is shown in Program 4 (Appendix 1). Unlike the prior

output oriented TE model, this program requires some additional data steps, so we present the

program in its entirety.

Data are read into the R program in the same manner as previous programs using

“read_csv” (line 174), followed by creation of the X matrix. A vector “varindex” is then created

(line 179) that contains four elements. The first two elements have the value of zero that

corresponds to the fixed factors, while the final two elements have the value one, corresponding

to the variable inputs. Two more vectors are created, “var3” and “var4” (line 180-181) that hold

values of zero for all elements except for a single value of one, corresponding to the position of

one of the variable inputs in the X matrix. Skipping to line 188, the value NV is created, that is

the sum of all elements in the vector “varindex”, which here is equal to two. Next, a value

“NCX” is established, that is the difference between the total number of inputs (N) and the

number of variable inputs NV (i.e. N-NV, line 189). The data step ends on line 190 where the

YX matrix is created.

11

The initial A matrix that is created contains two more columns than the same A matrix

created for the output oriented TE program because there are two variable inputs for this problem

(line 194). This is done on line 194 through the use of the variable NV created on line 188, and

allows more than two extra columns to be added if required. The optimal levels of the variable

inputs are calculated endogenously through solving the DEA model, which means they need to

have negative values in the A matrix and zero values in the right hand side constraint. The values

from the YX matrix are then inserted into the A matrix using the transpose operator (line 195),

and the value “1” is inserted into the last row of the A matrix for the VRS constraint (line 196).

The objective function coefficients are set in line 200, by setting the value “0” in columns

1 through J+NV, and then inserting 1 into the last row. This conforms to the objective function

shown in equation 2.4. The signs for the constraints (“rest”) are initially set in line 201, and then

redefined in line 202 for the inputs using an “ifelse” construct. This line sets the constraint such

that if the value in “varindex” for the column in question is equal to “1” the constraint sign is set

to an equality (=), else it is set as an inequality (<=). Lines 215-216 initialize two variables that

will hold the values of variable inputs returned by the model for each observation.

Line 218-235 set values for each iteration of the loop that solves the DEA problem. First,

the A matrix is reconfigured. Lines 219 and 220 set the value for columns J+1 and J+2 to be

equal to negative one for either var3 or var4. Only one value in the column will be equal to

negative one. Then, the negative value of the outputs is placed in column J+3 for observation j

(line 221). The A matrix for observation one in our data is shown in Figure 6. The right hand

side (rhs) values are set in line 222, with zero being inserted for the outputs, and the variable

inputs being assigned the value zero using the “varindex” vector. Since “varindex” is equal to

zero for the fixed inputs, they are set equal to their observed values in the rhs vector. The column

12

values for the LP model are then set in lines 224-226, and the objective function is set in line

227. Line 230 stores the objective function values, while the values for the variable inputs

returned by the model are stored in var1 and var2 in lines 232 and 233. Line 237 combines all

the values returned by the DEA model into one data frame (results), which is then printed out on

line 238.

Results for the value of theta returned by the Johansen capacity model with VRS are

shown in Figure nine (Appendix 2). Since the capacity model is less constrained than the output

oriented TE model (VRS), the Johansen value will naturally be greater, or equal to the output

oriented TE value. Additionally, figure 10 reports the values that are returned for the optimal

level of the variable inputs needed to reach capacity output. These figures are important because

they tell the firms how their use of variable inputs will need to be changed in order to reach

capacity output. Note that in some instances (observation #2) less variable inputs are needed.

3.0 The directional distance function (DDF) model

The directional distance function (DDF) is a more generalized version of the previous

distance function models used to calculate input and output oriented TE shown in prior sections

(Färe and Grosskopf, 2006). It offers flexibility for a wide range of problems because the

directional vector can easily be set to different values, allowing contraction or expansion of

specific outputs and inputs. It has proved particularly useful for modelling environmental

problems where pollution can be treated as an “undesirable” output and efficiency can then be

measured in terms of increasing the “desirable” outputs, while simultaneously contracting the

“undesirable” outputs. (Färe, et al., 2005, Färe, et al., 2011, Pasurka, 2006). Below, we present a

DDF model which expands outputs, while simultaneously contracting inputs, along with the

associated R code. We then modify the program by splitting the outputs into either “desirable” or

13

	�

	�

“undesirable” and setting up the model so that it expands “desirable” outputs, while contracting

“undesirable” outputs.

The directional distance function model with VRS, which expands outputs while

simultaneously contracting inputs is constructed as:

�@� RS, . ."(� ≥ �� + SUV (3.1) #(� ≤ �� − SU4!1(� = 1
After re-arranging terms, the following formulation is equivalent:

�@� RS, . ."(� − SUV ≥ ��
(3.2) #(� + SU4 ≤ ��!1(� = 1

In matrix form, model 3.2 is constructed as:

��@� +0′ 1- . / S�. ."′ −UV ≥ �� � (3.3) #′ U4 P . / >≤? >� ?S �=1′ 0 1� ≥ 0
O

In all three models, the variables (g
y , gx) are directional vectors, and a value needs to be

chosen for each. For this example, we will set the values for the directional vectors equal to the

observed values for each observation. This results in a multiplicative model where outputs are

expanded by (1+β) and inputs contracted by (1-β). Other values for the directional vector, such

14

as (1,-1) could also have been chosen. A value of zero returned by the model indicates that the

observation is efficient and no expansion of outputs or contraction of inputs can take place. A

value greater than zero, for example 0.1, means that the firm is 90% efficient (1-β) and can

expand outputs and contract inputs by 10%. Note that β is bounded above at one, since a value

greater than one would contract inputs below zero.

The R program needed to estimate model 3.3 is in Appendix 1 (program 5), and uses the

same steps as shown in program 3 to read in the data and set up the initial A matrix. The

difference between this program and previous programs begins on line 246, where the first loop

of the DEA model is solved. Line 246 defines a matrix, “dy”, that holds the values of the outputs,

and line 247 defines a matrix, “dx” to hold the values of the inputs. Because beta (β) is being

used to both expand outputs, and contract inputs, it needs to act on both the outputs and inputs in

the A matrix. These matrices are then inserted into the last column of the A matrix in line 248,

with the values for dy being set to their negative, thus insuring the proper sign. The right hand

side (rhs) value is then set to the values in the YX matrix, and the value one for the VRS

constraint. This differs from the usual output (input) oriented TE model where the rhs values for

the outputs (Y) (inputs, X) are set equal to zero. The program is then solved in line 255, and the

objective values are stored in line 256. As stated previously, in order to calculate the measure of

TE, the objective function values need to be subtracted from one.

Results for our 10 observation data set are shown in figure nine (Appendix 2). The

majority of values returned by the model are zero, meaning that outputs can’t be expanded while

simultaneously contracting inputs. For those observations with values greater than one, the value

yields the percentage that outputs should be expanded and inputs contracted to be placed on the

efficient frontier. For example, observation two returned a value of .046. This means that in

15

	�

order to be considered efficient, our output should be 1.046 times the observed output, and inputs

should be 0.954 times the observed inputs (1-.046).

3.1 The DDF model with desirable and undesirable outputs.

One application for DDF models which has emerged in recent years have been models to

estimate efficiency and other metrics for polluting industries (Färe, et al., 1989, Färe, et al., 2005,

Färe, et al., 2006, Pasurka, 2006). In this type of DDF model, inputs are generally held constant

and the model is constructed so as to measure efficiency in terms of expanding desirable outputs,

and contracting undesirable outputs. The polluting output is considered an “undesirable” output.

For example, an electric generating plant produces electricity, but also emissions such as sulfur

dioxide, which is considered polluting, or “undesirable.”

In order to estimate TE with both desirable and undesirable outputs, the outputs need to

be separated into a vector of desirable (y) and undesirable outputs (u). Similar to the first ddf

model presented above, the model expands desirable outputs, while contracting undesirable

outputs, given the inputs. The ddf model for estimating TE is:

�@� RS,
(. . �" � − SUV ≥ � ((3.4) W � + SUX = 7�#(� ≤ ��!1(� = 1

In matrix form, the model is:

16

��@� +0′ 1- . / S�. ."′ −U� �≥ ⎛W′ U ⎞ � = 7 ⎛7 ⎞⎜ ⎟ . / < = S ≤ �#′ 0 =1′ 0 ⎝⎝ ⎠ 1 ⎠� ≥ 0
(3.5)

The R code to implement the ddf model for a 10 observation problem is found in program

six (Appendix 1), and we present the program in its entirety. A different data set is used for this

model because the data needs to contain both desirable and undesirable outputs. In this example,

there are two desirable outputs (Y1,Y2), one undesirable output (U1), and four inputs (FX1,

FX2, VX1,VX2). The data are read in on line 279 from a .csv file, and the X matrix is created

with the data on inputs (line 283). Next, two Y matrices are created, one which holds the

desirable outputs (YD), and the other which holds the undesirable (YU) outputs (lines 285-286).

These are then joined together to create the single output matrix Y (line 287). Lines 289-90

create two variables, MD and MU that contain the number of desirable outputs (MD) and

undesirable outputs (MU) in the YD and YU matrices (two and one, respectively). Counters for

the number of columns in the full Y and X matrices, along with the number of rows

(observations) in X are created in lines 291-293. Finally, Y and X are joined together to form one

YX matrix (line 294).

Construction of the initial A matrix is consistent with the way it was constructed in all

other programs (lines 298-300). Line 303 constructs the constraint vector, with the sign for the

desirable outputs being set to “>=”, the undesirable output constraint is set to “=” to reflect that

disposability is costly, the input constraint is set to “<=”, while the vrs constraint is set to “=”.

17

The remainder of the commands setting up the LP problem are found in lines 304-312. These

commands did not differ from prior models presented above.

The DDF model is solved in lines 330-335. The last column of the A matrix for each

observation is set in lines 321-323. First, two matrices are initialized, one for the desirable

outputs (dyd) and one for the undesirable outputs (dyu) (321-322). Column J+1 of the A matrix

is then set to the negative vector of the desirable outputs and the positive vector of the

undesirable outputs (line 323). This corresponds to the construction of the A matrix found in

model 3.5 above. Figure 7 shows the A matrix used for solving the DDF program for the first

observation.

The rhs values for this model are equal to the observed values for each observation (line

325). Lines 326-328 set values for the LP solver to use, and the model is solved in line 330. The

objective function value is passed to the variable objvals1 in order to be printed later. The loop is

closed in line 335 and the objective function values are printed in line 337. Note that the TE

value will be equal to 1-objvals1.

4.0 Bootstrapping DEA in R

DEA models assume that all deviations from the production frontier are due to

inefficiency, rather than noise or random deviations. This has led to a great deal of research to

explore the statistical properties of the DEA estimator (Fried, et al., 2008, Simar, 1996, Simar

and Wilson, 2000). Exploring all of the literature surrounding this topic is well beyond the scope

of this paper, but one technique that has gained popularity for exploring the statistical properties

of estimators resulting from DEA models is the bootstrap (Simar and Wilson, 2000). Below we

present the R code for bootstrapping the output oriented TE model using a subsample bootstrap

18

procedure (Geyer, 2006). This is a straightforward approach to implement, and allows one to

construct bias corrected mean values, along with confidence intervals for the DEA estimates.

Program seven in Appendix 1 begins after solving the initial output oriented DEA model,

where the results are stored in the dataframe objvals2 (line 342). The initial LP model is then

deleted on the next line, and the bootstrap portion of the program begins on line 347. The first

step in this portion of the program is to set a seed for the random draws using the “set.seed”

command (line347). Next the value “n” is set equal to the number of observations in the data, a

value “m” is initialized that will determine the size of the subsample bootstrap, and the variable

B is set to 250 which is the number of bootstrap replicates (lines 348-350). Next, three new

matrices are defined (lines 354-357). The first, “statusB” is designed to hold status codes from

each bootstrap iteration and observation that tells whether the model solved. The second, “boot”

will hold the objective function values for each bootstrap iteration and observation. The final

matrix, “AB” is meant to hold the subsample of observations that are used for each bootstrap

iteration. Note that the number of columns in the AB matrix is equal to the number of

observations in the bootstrap sample (m) plus one (line 357).

The next set of commands (lines 358-364) set up the LP problem to be solved in LP_API,

and the actual bootstrap routine begins on line 366. Line 367 defines a variable “pickval” that is

a vector of random integers of size “m” from the number of observations in the data (J). This will

change for each iteration through the B loop. The AB matrix is populated on line 368 with the

values from the A matrix that correspond to observations found in “pickval”. Recall that the A

matrix was defined in the first part of the program to hold all the data from the transposed YX

matrix. Lines 370-372 sets the rows for the LP problem using the set.row command.

19

Lines 374-384 run the LP model for each observation in the data. The first column in the

AB matrix is set equal to the value of “s” which changes for each pass through the loop. This

ensures that each observation in the data set will be evaluated against the observations contained

in “pickval.” Note that “pickval” changes each time through the “B” loop as a new sample is

drawn from the observations. Because this is an output oriented model, the outputs for column

m+1 in the AB matrix are set equal to the negative of the output values found in column one

(line 376). The right-hand side for the LP model is set in line 377, and the rest of the LP_B

objects are set in lines 378-381, including the objective function. The LP model is solved (line

382), and the objective function values are collected in the matrix “boot” (line 383). Line 384

ends the loop for “s” which is all the observations in the data, while the “B” loop is closed at line

388. Line 387 sets up a counter so the user knows what bootstrap iteration they are on.

In order to calculate the bias corrected scores, the returns to scale (RTS) needs to be set

(line 389). The value for the convergence rate “beta” used in the bias correction is set depending

on whether the model is variable returns to scale (VRS), or constant returns to scale (CRS; lines

391-392). Line 393 defines a matrix “S” to hold all the bias-corrected scores, while lines 396-

400 print out various statistics for the bias corrected scores.

20

References

Charnes, A., W.W. Cooper, and E. Rhodes. 1978. "Measuring the efficiency of decision making units."

European Journal of Operational Research 2:429-444.

Daraio, C., K. Kerstens, T. Nepomuceno, and R.C. Sickles. 2019. "Empirical surveys of frontier

applications: a meta-review." International Transactions in Operational Research.

Färe, R., and S. Grosskopf. 2006. New directions: efficiency and productivity: Springer Science & Business

Media.

Fare, R., S. Grosskopf, and E.C. Kokkelenberg. 1989. "Measuring plant capacity, utilization and technical

change: a nonparametric approach." International Economic Review:655-666.

Fare, R., S. Grosskopf, and C.K. Lovell. 1994. Production frontiers: Cambridge University Press.

Färe, R., S. Grosskopf, C.K. Lovell, and C. Pasurka. 1989. "Multilateral productivity comparisons when

some outputs are undesirable: a nonparametric approach." The review of Economics and

Statistics:90-98.

Färe, R., S. Grosskopf, D.-W. Noh, and W. Weber. 2005. "Characteristics of a polluting technology: theory

and practice." Journal of econometrics 126:469-492.

Färe, R., J.E. Kirkley, and J.B. Walden. 2006. "Adjusting technical efficiency to reflect discarding: The case

of the US Georges Bank multi-species otter trawl fishery." Fisheries Research 78:257-265.

---. 2011. "Measuring Fishing Capacity When Some Outputs Are Undesirable." Eastern Economic Journal

37:553-570.

Fried, H.O., C.K. Lovell, and S.S. Schmidt. 2008. The measurement of productive efficiency and

productivity growth: Oxford University Press.

Geyer, C.J. 2006. "5601 notes: The subsampling bootstrap." Unpublished manuscript.

Pasurka, C.A. 2006. "Decomposing electric power plant emissions within a joint production framework."

Energy Economics 28:26-43.

Simar, L. 1996. "Aspects of statistical analysis in DEA-type frontier models." Journal of Productivity

Analysis 7:177-185.

Simar, L., and P.W. Wilson. 2000. "A general methodology for bootstrapping in non-parametric frontier

models." Journal of Applied Statistics 27:779-802.

Simar, L., and P.W. Wilson. 2000. "Statistical inference in nonparametric frontier models: The state of

the art." Journal of Productivity Analysis 13:49-78.

21

 Appendix 1. DEA programs written in R

22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Program 1. Input oriented TE with CRS

#First Clear any previous data stored in memory, and require lpSolveAPI and readr

rm(list=ls())

PKG <- c("lpSolveAPI", "readr")

for (p in PKG) {

if(!require(p,character.only = TRUE)) {

install.packages(p)

require(p,character.only = TRUE)}

}

#Beginning of Data Step

setwd("~/John/joe/manual") #Set working directory to where data is stored.

df0=read_csv("data1.csv")

names(df0)

df0=df0[1:10,]

create input X matrix

X=df0[,c("FX1","FX2","VX1","VX2")]

create output Y matrix

Y=df0[,c("Y1")]

M=ncol(Y)

N=ncol(X)

J=nrow(X)

YX=cbind(Y,X)

#End of DATA Step

A=matrix(0,M+N,J+1)

#M+N is the number of inputs and outputs, J+1 sets the number of

#columns equal to the the number of observations +1

A[1:(M+N),1:J]=t(YX)

#t is transpose operator, which turns rows into columns

#Next, set up LP Model

objtype='min'

23

obj=c(rep(0,J),1)

#rest defines the constraints

rest=c(rep('>=',M),rep('<=',N))

#nr is the number of rows, n c is the number of columns

nr=nrow(A)

nc=ncol(A)

#LP_API is the name chosen for the LP problem

LP_API=make.lp(nrow=nr,ncol=nc)

lp.control(LP_API,sense='min')

set.constr.type(LP_API,rest)

for(i in 1:nr){

 set.row(LP_API,i,A[i,]) #setting up rows by reading in A matrix rows

}

objvals=0

status=0

#Begin loop for DEA Program

for(j in 1:J){

 A[(M+1):(M+N),J+1]= -A[(M+1):(M+N),j] #column J+1 in A is being set to -obs j input data

 rhs=c(as.matrix(Y[j,]),rep(0,N)) #rhs is being set to obs j output data, a nd then zero for inputs

 set.rhs(LP_API,rhs)

 set.column(LP_API,nc,A[,nc])

 set.objfn(LP_API,obj)

#status[j] stores the solver value in case there is any question whether the program solved for

#a specific loop. O bjvals[j] stores the objective function value

 status[j]=solve(LP_API)

 objvals[j]=get.objective(LP_API)

 if(j%%100==0|j==J) print(paste('on dmu',j,'of',J)) #counter to show where we are in loop

}

end loop for(j in 1;J)

print(objvals)

40

45

50

55

60

65

70

39

41

42

43

44

46

47

48

49

51

52

53

54

56

57

58

59

61

62

63

64

66

67

68

69

71

72

24

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

73 Program 2. Input Oriented TE Model with VRS

#Define A Matrix. M+N+1 rows allows for VRS.

A=matrix(0,M+N+1,J+1)

#Next, Transform YX matrix and copy to A.

A[1:(M+N),1:J]=t(YX)

#Now, s et the last row in the A matrix equal to 1, for all J values

#This is for VRS.

A[M+N+1,1:J]=1.0

#set zero for all J columns, plus 1 for last columns

obj=c(rep(0,J),1)

rest=c(rep('>=',M),rep('<=',N),'=')

nr=nrow(A)

nc=ncol(A)

LP_API=make.lp(nrow=nr,ncol=nc)

lp.control(LP_API,sense='min')

set.objfn(LP_API,obj)

set.constr.type(LP_API,rest)

for(i in 1:nr){

 set.row(LP_API,i,A[i,]) #setting up rows by reading in A matrix rows

}

objvals2=0

status2=0

for(j in 1:J){

 A[(M+1):(M+N),J+1]=-A[(M+1):(M+N),j]

 #column J+1 in A is being set to the negative of obs j input data

 rhs=c(as.matrix(Y[j,]),rep(0,N),1)

74

25

102

103

104

105

106

107

108

109

110

111

#rhs is being set to obs j output data, and zero for input data, and 1 for VRS

set.rhs(LP_API,rhs)

set.column(LP_API,nc,A[,nc]) #loading revised input data into LPApi matrix

set.objfn(LP_API,obj)

status2[j]=solve(LP_API)

objvals2[j]=get.objective(LP_API)

if(j%%100==0|j==J) print(paste('on dmu',j,'of',J))

}

print(objvals2)

26

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

112 Program 3. Output Oriented TE Model with VRS

#Define A Matrix. M+N+1 rows allows for VRS.

A=matrix(0,M+N+1,J+1)

#Next, Transform YX matrix and copy to A.

A[1:(M+N),1:J]=t(YX)

#Now, s et the last row in the A matrix equal to 1, for all J values

#This is for VRS.

A[M+N+1,1:J]=1.0

objtype='max'

#set zero for all J colums, plus 1 for last column

obj=c(rep(0,J),1)

rest=c(rep('>=',M),rep('<=',N),'=')

nr=nrow(A)

nc=ncol(A)

LP_API=make.lp(nrow=nr,ncol=nc)

lp.control(LP_API,sense=objtype)

set.objfn(LP_API,obj)

set.constr.type(LP_API,rest)

for(i in 1:nr){

 set.row(LP_API,i,A[i,]) #setting up rows by reading in A matrix rows

}

objvals2=0

status2=0

113

27

140 for(j in 1:J){

 A[1:M,J+1]=-A[1:M,j]

 rhs=c(rep(0,M),as.matrix(X[j,]),1)

 #rhs is being set to obs j output data, a nd J input data from X0, and 1 for VRS

 set.rhs(LP_API,rhs)

 set.column(LP_API,nc,A[,nc]) #loading revised input data into LPApi matrix

 set.objfn(LP_API,obj)

 status2[j]=solve(LP_API)

 objvals2[j]=get.objective(LP_API)

 if(j%%100==0|j==J) print(paste('on dmu',j,'of',J))

} # end loop for(j in 1:J)

print(objvals2)

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

28

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

157 Program 4. The Johansen Capacity M odel

#R Program to calculate Johansen capacity model

#Model is taken from "Production Frontiers" (1994) by Fare, Grosskopf and Lovell

#First Clear any previous data stored in memory, and require lpSolveAPI and readr

rm(list=ls())

PKG <- c("lpSolveAPI", "readr")

for (p in PKG) {

 if(!require(p,character.only = TRUE)) {

 install.packages(p)

 require(p,character.only = TRUE)}

}

#Beginning of Data Step

setwd("~/John/joe/manual") #Set working directory to where data is stored.

df0=read_csv("data1.csv")

df0=df0[1:10,]

create input X matrix

X=df0[,c("FX1","FX2","VX1","VX2")]

varindex=c(0,0,1,1)

var3=c(0,0,1,0)

var4=c(0,0,0,1)

create output Y matrix

Y=df0[,c("Y1")]

(M=ncol(Y))

(N=ncol(X))

158

29

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

(J=nrow(X))

(NV=sum(varindex))

(NCX=N-NV)

YX=cbind(Y,X)

#End of DATA Step

A=matrix(0,M+N+1,J+1+NV)

A[1:(M+N),1:J]=t(YX)

A[M+N+1,1:J]=1.0

nr=nrow(A)

nc=ncol(A)

obj=c(rep(0,J+NV),1)

rest=c(rep('>=',M),rep('<=',N),'=')

rest[(M+1):(M+N)]=ifelse(varindex==1,'=','<=')

LP_API=make.lp(nrow=nr,ncol=nc)

lp.control(LP_API,sense='max')

set.objfn(LP_API,obj)

for(i in 1:nr){

set.row(LP_API,i,A[i,])

}

set.constr.type(LP_API,rest)

status2=0

objvals2=0

var1=0

var2=0

30

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

for(j in 1:J){

A[(M+1):(M+N),J+1]=as.matrix(-var3)

A[(M+1):(M+N),J+2]=as.matrix(-var4)

A[1:M,J+3]=-A[1:M,j]

rhs=c(rep(0,M),(1-varindex)*as.matrix(X[j,]),1)

set.rhs(LP_API,rhs)

set.column(LP_API,J+1,A[,J+1])

set.column(LP_API,J+2,A[,J+2])

set.column(LP_API,J+3,A[,J+3])

set.objfn(LP_API,obj)

status2[j]=solve(LP_API)

objvals2[j]=get.objective(LP_API)

z=get.variables(LP_API)

var1[j]=z[J+1]

var2[j]=z[J+2]

if(j%%100==0|j==J) print(paste('on dmu',j,'of',J))

} # end loop for(j in 1;J)

results<-cbind(status2,objvals2,var1,var2)

print(results)

31

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

240 Program 5. The Directional Distance Function (DDF) Model

run DEA loop

objvals1=0

status1=0

for(j in 1:J){

 (dy=as.matrix(Y[j,]))

 (dx=as.matrix(X[j,]))

 A[1:(M+N),J+1]=c(-dy,dx)

 rhs=c(as.matrix(YX[j,]),1)

 set.rhs(LP_API,rhs)

 set.column(LP_API,nc,A[,nc])

 set.objfn(LP_API,obj)

 status1[j]=solve(LP_API)

 objvals1[j]=get.objective(LP_API)

 if(j%%100==0|j==J) print(paste('on dmu',j,'of',J))

} # end loop for(j in 1;J)

print(objvals1)

241

32

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

262 Program 6. DDF model with desirable and undesirable outputs

#R Program to calculate directional distance function model with desirable and undesirable outputs

#Model is taken from "New Directions: Efficiency and Productivity" (2004) by Fare and Grosskopf

#First Clear any previous data stored in memory, and require lpSolveAPI and readr

rm(list=ls())

PKG <- c("lpSolveAPI", "readr")

for (p in PKG) {

 if(!require(p,character.only = TRUE)) {

 install.packages(p)

 require(p,character.only = TRUE)}

}

#Beginning of Data Step

setwd("~/John/joe/manual") #Set working directory to where data is stored.

df0=read_csv("ddf_example.csv")

df0=df0[1:10,]

create input X matrix

X=df0[,c("FX1","FX2","VX1","VX2")]

create output Y matrix

YD=df0[,c("Y1","Y2")] #Desireable Outputs

YU=df0[,c("U1")] #Undesirable Outputs

Y=cbind(YD,YU) #column bind YD and YU

(MD=ncol(YD))

(MU=ncol(YU))

263

33

(M=ncol(Y))

(N=ncol(X))

(J=nrow(X))

YX=cbind(Y,X)

#End of DATA Step

A=matrix(0,M+N+1,J+1)

A[1:(M+N),1:J]=t(YX)

(A[(M+N+1),1:J]=rep(1,J))

##End of A Matrix build###

obj=c(rep(0,J),1)

rest=c(rep('>=',MD),rep('=',MU), rep('<=',N),'=')

nr=nrow(A)

nc=ncol(A)

LP_API=make.lp(nrow=nr,ncol=nc)

lp.control(LP_API,sense='max')

set.objfn(LP_API,obj)

for(i in 1:nr){

 set.row(LP_API,i,A[i,])

}

set.constr.type(LP_API,rest)

run loop

objvals1=0

status1=0

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

34

for(j in 1:J){

 dyd=as.matrix(YD[j,])

 dyu=as.matrix(YU[j,])

 A[1:M,J+1]=c(-dyd,dyu)

 rhs=c(as.matrix(Y[j,]),as.matrix(X[j,]),1)

 set.rhs(LP_API,rhs)

 set.column(LP_API,nc,A[,nc])

 set.objfn(LP_API,obj)

 status1[j]=solve(LP_API)

 objvals1[j]=get.objective(LP_API)

 if(j%%100==0|j==J) print(paste('on dmu',j,'of',J))

} # end loop for(j in 1;J)

print(objvals1)

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

35

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

Program 7. Bootstrap Output Oriented TE Model

#First, r un initial output oriented DEA program and save results, then

#delete the initial lp model – LP_API

objvals2[j]=get.objective(LP_API)

delete.lp(LP_API)

bootstrap DEA Model using lpSolveAPI

set.seed(1001)

(n=J)

(m=round(sqrt(n),0))

B=250

############################

B=number of bootstraps

############################

statusB=matrix(NA,B,n)

boot=matrix(NA,B,n)

###########################

AB=matrix(0,M+N+1,m+1)

objB=c(rep(0,m),1)

###########################

ncB=ncol(AB)

LP_B=make.lp(nrow=nr,ncol=ncB)

lp.control(LP_B,sense=objtype)

set.objfn(LP_B,objB)

set.constr.type(LP_B,rest)

for(b in 1:B){

36

 pickval=sample(1:J,m)

 AB[,1:m]=A[,pickval]

 for(i in 1:nrB){

 set.row(LP_B,i,AB[i,])

 }

 for(s in 1:J){

 (AB[,1]=A[,s])

 AB[1:M,m+1]=-AB[1:M,1]

 rhsB=c(rep(0,M),(AB[(M+1):(N+1)]),1)

 set.rhs(LP_B,rhsB)

 set.column(LP_B,1,AB[,1])

 set.column(LP_B,ncB,AB[,ncB])

 set.objfn(LP_B,objB)

 statusB[b,s]=solve(LP_B)

 boot[b,s]=get.objective(LP_B)

 }# end loop for (s in 1:J)

#The next line prints to the screen which iteration of the bootstrap

#is being calculated

 if(b%%1==0|b==B) print(paste('on bootstrap rep',b,'of',B))

} # end loop on b#################

RTS='VRS'

construct the "S" matrix

if(RTS=='CRS'|RTS=='crs') (beta=2/(M+N))

if(RTS=='VRS'|RTS=='vrs') (beta=2/(M+N+1))

S=matrix(0,B,n)

 for(s in 1:J) S[,s]=objvals2[s]-((m/n)^beta)*(boot[,s]-objvals2[s])

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

37

395

396

397

398

399

400

401

mean(objvals2) #Calculates mean TE score for initial DEA Model

mean(S) #Calculates mean TE score across all bootstrap runs

quantile(S,0.025) #Calculates lower 2.5% tail of bootstrap scores

quantile(S, 0.5) #Calculates median of bootstrap scores

quantile(S, 0.975) #calculates upper 2.5% tail of bootstrap scores

38

Y1 FX1 FX2 VX1 VX2

9

16

18180 97 859 8

17675 70 369 7

14595 64 505 7 22

18180 93 756 7 10

18180 71 303 6 9

18167 85 1182 8 9

30906 70 606 8 23

17850 64 359 7 12

17170 95 516 8 15

17776 76 687 8 9

Figure 1. YX matrix for DEA program

39

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

0

0

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776

97 70 64 93 71 85 70 64 95 76

859 369 505 756 303 1182 606 359 516 687 0

8 7 7 7 6 8 8 7 8 8 0

9 16 22 10 9 9 23 12 15 9 0

Figure 2. Initial A matrix for DEA program after inserting values from YX matrix.

40

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776 0

 97 70 64 93 71 85 70 64 95 76 -97

859 369 505 756 303 1182 606 359 516 687 -859

 8 7 7 7 6 8 8 7 8 8 -8

 9 16 22 10 9 9 23 12 15 9 -9

Figure 3. Final A matrix for solving input oriented TE model with CRS for DMU 1.

41

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

0

-97

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776

97 70 64 93 71 85 70 64 95 76

859 369 505 756 303 1182 606 359 516 687 -859

8 7 7 7 6 8 8 7 8 8 -8

9 16 22 10 9 9 23 12 15 9 -9

1 1 1 1 1 1 1 1 1 1 0

Figure 4. Final A matrix for solving input oriented TE model with variable returns to scale for DMU 1.

42

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

-18180

0

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776

97 70 64 93 71 85 70 64 95 76

859 369 505 756 303 1182 606 359 516 687 0

8 7 7 7 6 8 8 7 8 8 0

9 16 22 10 9 9 23 12 15 9 0

1 1 1 1 1 1 1 1 1 1 0

Figure 5. Final A matrix for solving output oriented TE problem with variable returns to scale for DMU 1.

43

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776 0 0 -18180

97 70 64 93 71 85 70 64 95 76 0 0 0

859 369 505 756 303 1182 606 359 516 687 0 0 0

8 7 7 7 6 8 8 7 8 8 -1 0 0

9 16 22 10 9 9 23 12 15 9 0 -1 0

1 1 1 1 1 1 1 1 1 1 0 0 0

Figure 6. Initial A matrix for Johansen plant capacity model observation 1.

44

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
 1 2913 7721 6080 3315 19212 22516 14188 3350 4193 753 -2913

 2 3044 7972 10667 4005 508 10881 12655 8678 11153 4443 -3044

 3 2458 3093 1810 18 814 5464 501 1604 9764 867 2458

 4 88 117 92 74 107 95 87 79 77 82 0

 5 682 1518 1100 451 1034 935 468 572 572 528 0

 6 4 6 5 4 7 6 5 6 5 6 0

 7 6 11 8 6 9 10 13 11 11 6 0

 8 1 1 1 1 1 1 1 1 1 1 0

Figure 7. A matrix for ddf model with one undesirable output, observation one.

45

Appendix 2. Data used and Results from sample DEA programs

46

DMU Output

Fixed Input

1

Fixed Input

2

Variable

Input 1

Variable

Input 2

1 18180 97 859 8 9

2 17675 70 369 7 16

3 14595 64 505 7 22

4 18180 93 756 7 10

5 18180 71 303 6 9

6 18167 85 1182 8 9

7 30906 70 606 8 23

8 17850 64 359 7 12

9 17170 95 516 8 15

10 17776 76 687 5 9

Figure 8. Outputs and inputs for 10 observations used in DEA examples

DMU Input Oriented

TE (CRS)

Input Oriented

TE (VRS)

Output

Oriented TE

(VRS)

Johansen

Capacity

Model (VRS)

DDF Model

(VRS)

1 1.000 1.000 1.000 1.700 0.000

2 0.846 0.950 1.168 1.168 0.046

3 0.557 1.000 1.223 1.223 0.000

4 0.900 0.900 1.050 1.700 0.033

5 1.000 1.000 1.000 1.000 0.000

6 0.999 1.000 1.001 1.701 0.000

7 1.000 1.000 1.000 1.000 0.000

8 0.894 1.000 1.000 1.000 0.000

9 0.659 0.750 1.376 1.580 0.202

10 0.978 1.000 1.023 1.739 0.000

Figure 9. Results from five DEA models using data from 10 observations.

47

Observation Optimal Variable

Input 1

Optimal Variable

Input 2

1 8.000 23.000

2 6.518 12.097

3 7.000 12.000

4 8.000 23.000

5 6.000 9.000

6 8.000 23.000

7 8.000 23.000

8 7.000 12.000

9 7.406 18.842

10 8.000 23.000

Figure 10. Optimal levels of variable inputs from Johansen capacity model.

48

	Measuring Technical Efficiency and Capacity with Data Envelopment Analysis: A foundational approach using the R programming language
	Introduction
	R Code
	References
	Appendix 1
	Tables

