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Introduction 

Data Envelopment Analysis (DEA), originally introduced by Charnes, et al. (1978) has 

become a popular analytical method for assessing efficiency, capacity, productivity and 

conducting benchmarking studies. Along with Stochastic Frontier Analysis (SFA), DEA has 

been used in an abundant and ever growing number of empirical studies over the last 40 years, in 

a diverse number of fields (Daraio, et al., 2019). DEA models can be constructed and run using a 

variety of software packages, such as GAMS, Excel, SAS, LINDO, along with some programs 

which were specifically built for DEA models such as DEAP and FRONTIER. Since DEA 

models are in reality linear programming (L.P.) models, any software which has an L.P. solver 

can be used to solve DEA problems. 

Over the past several years, the software product R has become popular, and a built-in 

DEA and SFA package ‘Benchmarking’ has been developed that can easily be used to solve 

DEA models. This workbook is designed to demonstrate how to build R programs to solve DEA 

models for those who want to “build their own” rather than use the Benchmarking program. 

There are several advantages to this approach. First and foremost, it gives analysts the ability to 

customize their DEA models in whatever way they desire, and the ability to retrieve and display 

whatever results they wish by directly using the LP solvers in R. Secondly, if new L.P. solvers 

are incorporated into R, the programs could still be used with a few minor changes, potentially 

improving solve times for complex problems. Thirdly, the approach outlined in this workbook 

removes a layer for the modeler. Instead of using a package such as Benchmarking, or Fear (for 

bootstrapping models), the user directly solves the problems in an LP framework. 
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The programs that we show are simplified versions of DEA models solved using the R 

package lpSolve_API. We include the standard input and output oriented efficiency problem, 

along with the Johansen capacity model and two directional distance function models. The first 

directional distance function model expands outputs while contracting inputs, while the second is 

one used for an environmental problem where efficiency is measured in terms of expanding 

“desirable” outputs, while contracting “undesirable” outputs while leaving inputs unchanged. All 

the models shown can be found in the book “Production Frontiers” (Fare, et al., 1994), or the text 

“New Directions: Efficiency and Productivity” (Färe and Grosskopf, 2006). We also include a 

bootstrap routine based on a sub-sample bootstrap model, which runs quite fast and gives 

consistent bootstrap estimates. For each example, the mathematical formulation of the DEA 

model in equation form is presented, followed by the matrix representation, and then the R code 

used to generate the model. Some examples include the actual matrices that are used by the R 

program for small problems using a subset of the original data. Results for the first five models, 

along with a sample 10 observation data set are given in Appendix 2. 
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1.0 Input Oriented Technical Efficiency 

Input oriented technical efficiency measures the ability of a firm to contract their inputs 

given their desire to produce a certain output. Fare, et al. (1994) proposed the following DEA 

model to measure input oriented technical efficiency with constant returns to scale (CRS; 

page64): 

�� = ����, 
� . .��� ≤ ∑��� �����, � = 1,2, … � (1.1) ∑���� �� ��� ≤ ���, � = 1,2, . . , �,�� ≥ 0, = 1,2, … !. 

Here, yjm is the quantity of output m produced by firm j, and xjn is the quantity of input n 

used by firm j to produce output m. The zj term is an individual weight given to each firm, while 

λ is the objective function value. Both z and λ are decision variables chosen by the model, which 

is estimated once for each firm in the data. The model is solved in a loop once for each firm, and 

returns a value that shows how much the firm needs to contract its inputs in order to be 

considered efficient given its output level. This LP model can also be written as: 

�� = ����, 
� . .� ≤ �" (1.2) �# ≤ ��� ∈ ℜ&� 

In order to put model 1.2 into a form that can be solved in R, we transpose the matrices, bring the 

endogenous variable to the left hand side (LHS), and re-arrange some other terms giving: 
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�� = ����,	
�. . "(� ≥ ��    (1.3)  # ( � − 
�� ≤ 0 � ∈ * � 
In  matrix  form,  the  LP  model  is  shown  below:  

���� +0′ 1- . / 
�. ."′ 0 � �≥ �   (1.4)  0 1 . / . / 2 3#′ −� � 
 ≤ 0� ≥ 0 

 

 

                         

This  is  equivalent  to the  linear  programming problem  ���45+�- = 6�, �78 96  : ;� ≤ 8.        

R  Code  

The  R  program  to calculate  this  model  is  shown  in  Appendix 1 (Program  1).  The  first  

step taken  in  the  program  is  to  clear  all  values  that  might  be  in  memory  from  previous  versions,  

and to read in  the  data  (lines  1-26).  We  first  set  the  working directory  (line  13)  and then  read in  

an  external  comma  separated value  (csv)  file  that  is  stored in  that  directory  (line  14).   Line  15 

lists  out  the  names  of  the  columns  from  the  .csv  file  that  will  be  used in  lines  19 and 21.  In  order  

to test  our  code,  and to  provide  intermediate  results  for  this  example  that  can  be  looked at  easily,  

we  limit  our  model  to  only  include  the  first  10 observations  (line  17).  Next, t he  matrix  containing 

the  inputs  (X)  is  created on  line  19,  and the  output  (Y)  matrix  is  created on  line  21.  Note  for  this  

example,  we  are  only  using a  single  output. T hree  variables  M,  N,  and J  are  then  created which  

hold the  number  of  columns  in the  Y  and X  matrices  (M&N  respectively,  lines  23-24), a nd the  

number  of  observations  (J,  line  25).   The  Y  and X  matrices  are  then  combined to  form  a  new  
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matrix, YX (line 26). This is the end of the data step, and this same code can be now used across 

all DEA programs. 

The next step is to create the A matrix for this particular problem. The A matrix is 

initially created on line 30, and its values are set to zero. Note that the dimension of the A matrix 

is M (#outputs) + N(#inputs) rows, and J+1(#observations+1) columns, and populated with 

zeros. Values are then placed in the A matrix from the YX matrix using the transpose operator 

(line 33). The transpose operator (tr) takes the 10 by 5 YX matrix (Figure 1) and fits it into the 5 

by 11 A matrix (Figure 2). The first row of the YX matrix is now the first column on the A 

matrix. 

Next, the LP model is set up. First, the problem type is declared to be a minimization 

(line 38). The objective function coefficients are set up in a vector that has dimension J, and is 

filled with zeros, and then a single value of 1 (line 39). The (in)equality conditions for the inputs 

and outputs are set in line 41, and then two values (nr and nc) are initialized based on the number 

of rows and columns in the A matrix, respectively (lines 43-44). Control values for the 

lpSolveAPI package are set in lines 47-48, and the values for the rows in the LP problem are set 

in lines 50-52. Lines 53-54 set up variables that will hold the results from each run of the DEA 

model. 

A DEA model is solved once for each observation in the data, and is easily accomplished 

using a looping construct (lines 56-68). The first step in the loop sets the values in the last 

column of the A matrix, in the rows corresponding to the input values, equal to the negative 

values of the inputs from the A matrix, column j (line 57). This corresponds to the matrix 

representation of the problem shown in equation 1.4. The final A matrix when solving the DEA 

model for observation #1 is shown in Figure 3. Note, the negative values in column 11 
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correspond to the values in column one. Line 58 sets the right hand side values in a vector 

named rhs, and then passes that value to the solver in line 59. Line 60 sets the column values for 

the solver and line 61 passes the objective function values to the solver. Line 64 solves the model 

and passes the value for the solver status to the vector status, with a returned value of zero 

indicating that the model solved optimally. This is important in order to check whether the model 

solved at each iteration, or whether there were infeasibilities. The objective function value is 

returned to the vector objvals (line 65), and these values are printed out on line 71. For larger 

problems, another type of data structure may be needed to either hold, or print out the objective 

function values to another application, such as a spreadsheet. Finally, line 67 prints out to the 

screen which DMU is being solved so that for large problems it will be clear where the DEA 

program is in terms of all the observations, and line 68 closes the for loop. 

Data for 10 observations are shown in Appendix 2 (Figure 8), along with the results from 

the input oriented CRS model (Figure 9). These are provided so that the interested reader can 

check results from their DEA code written in R against these results. All results are rounded to 

three decimal places. 

1.1 Input oriented TE with VRS. 

A variable returns to scale model requires a slight modification to the prior program, with the 

addition of a convexity constraint as shown below: 

�� = ����,	
�. ."′� ≥ �� 
 #(� − 
�� ≤ 0 !1(� = 1 � ≥ 0

(1.5) 
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In equation 1.5, J 1¢ is a Jx1 vector of ones. In matrix form, this model would be specified as: 

As can be seen from model 1.6, the VRS problem requires an additional row in the A 

matrix. The modification of the prior CRS model in R is shown in program 2, beginning on line 

75. Here, we only present the changes from the prior R code, beginning with the reformulation of 

the A matrix, as the data input steps remain the same. Lines 75-80 create the A matrix, populates 

the cells in the matrix with the transformed YX, and adds a row of ones in order to incorporate 

VRS (line 80). When the LP model is constructed in the next section, and additional equality 

constraint is inserted into the character “rest” (line 84). The rhs value also needs to be modified 

for each pass through the “for” loop with a value of one inserted into the rhs matrix (line 101). 

Solving the model and collecting the objective function values is accomplished in lines 106-107. 

This completes the modifications needed for the VRS model. The A matrix for this problem is 

shown in figure 4. 

Results for the 10 observation data set are shown in Figure 9 (Appendix 2). With this 

model, most observations are considered efficient, with a value of 1.000 returned for seven 

observations. This was expected given that VRS was imposed and the limited number of 

observations. 
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2.0 Output oriented technical efficiency with variable returns to scale 

(VRS) 

An output oriented DEA model expands output for each DMU while holding the level of 

inputs fixed, and is estimated through the following L.P. problem, with vrs imposed: 

�� = �@�A B,. ."(� − B� ≥ 0# (2.1) (� ≤ ��!1(� ≥ 0� = 1 
This problem differs from the input oriented model in that output is being expanded through the 

term θ, and it is a maximization problem, rather than a minimization problem. In matrix form, 

this model would be: 

��@�  +0′ 1- . / B�. ."′ −�� ≥ 0�                         <#′ 0 = . / >≤? >�B �?1′ 0 = 1� ≥ 0 
(2.2) 

The R code for this output oriented program is shown in program 3 (Appendix 1). 

Reading in the data and setting up the initial A matrix is done no differently than in programs 1 

and 2. Since this is a maximization problem, the objective function type is set to “max” in line 

121. The last column of the A matrix is set differently than in the input oriented program because 

this is a maximization problem and the optimization is based on the M outputs. This is seen in 

line 141, where the last column of the A matrix is set equal to the negative values from rows one 

to M of observation j of the A matrix. The A matrix for the solving the first DEA problem for the 

first observation is shown in Figure 5. The right hand side is set equal to the zero for the outputs, 
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and to the value of the inputs for the inputs, and to one for the VRS constraint (line 142). The 

remaining part of the program is the same as programs one and two. 

Results for the output oriented model with VRS imposed are shown in Figure nine. Note 

that in the output oriented example, all the results are greater or equal to one. 

2.1 The Johansen Capacity Model 

The Johansen capacity model has been used extensively over the past two decades to 

estimate a physical measure of capacity and capacity utilization. It was operationalized by (Fare, 

et al., 1989), and is a variation of the output oriented TE measure shown in the previous section. 

The Johansen model is: 

C@D = �@� ,4E,AB 
( . ." #� − B� ≥ 0 F( � ≤ ��F (2.3) #G( � − �H = 0!1(� ≥ 0� = 1 

In the above capacity model, the inputs are partitioned into two constraints, one for the 

fixed factors (F) and the second for the variable factors (V). The fixed input constraint is the 

same as found in the output oriented TE model shown in the previous section. For the variable 

input constraint, xv is the optimal level of variable inputs and is returned by the model. This 

constraint ensures that the variable inputs do not constrain output, rather the fixed factors do so, 

which is consistent with the Johansen definition of capacity. The matrix form of the above set of 

equations is: 
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��@�  +0′ 0′ 1- 0�H1 B�. . "′ 0 −� � ≥ 0�                                             (2.4)  ⎛#( 0 0 ⎞ ≤ �FF � Q⎜ ⎟ 0 H( 1 O P O P #H −1′ 0 = 0B1′ 0 0 = 1⎝ ⎠� ≥ 0 
                       

As model 2.4 shows, the A matrix is now one row and one column greater (4 x 3) than the 

previous output oriented TE model (3 x 2). There is also an additional row in the right hand side 

to accommodate the variable input, and one in the vector describing the constraints. The R code 

to estimate the Johansen capacity model is shown in Program 4 (Appendix 1). Unlike the prior 

output oriented TE model, this program requires some additional data steps, so we present the 

program in its entirety. 

Data are read into the R program in the same manner as previous programs using 

“read_csv” (line 174), followed by creation of the X matrix. A vector “varindex” is then created 

(line 179) that contains four elements. The first two elements have the value of zero that 

corresponds to the fixed factors, while the final two elements have the value one, corresponding 

to the variable inputs. Two more vectors are created, “var3” and “var4” (line 180-181) that hold 

values of zero for all elements except for a single value of one, corresponding to the position of 

one of the variable inputs in the X matrix. Skipping to line 188, the value NV is created, that is 

the sum of all elements in the vector “varindex”, which here is equal to two. Next, a value 

“NCX” is established, that is the difference between the total number of inputs (N) and the 

number of variable inputs NV (i.e. N-NV, line 189). The data step ends on line 190 where the 

YX matrix is created. 
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The initial A matrix that is created contains two more columns than the same A matrix 

created for the output oriented TE program because there are two variable inputs for this problem 

(line 194). This is done on line 194 through the use of the variable NV created on line 188, and 

allows more than two extra columns to be added if required. The optimal levels of the variable 

inputs are calculated endogenously through solving the DEA model, which means they need to 

have negative values in the A matrix and zero values in the right hand side constraint. The values 

from the YX matrix are then inserted into the A matrix using the transpose operator (line 195), 

and the value “1” is inserted into the last row of the A matrix for the VRS constraint (line 196). 

The objective function coefficients are set in line 200, by setting the value “0” in columns 

1 through J+NV, and then inserting 1 into the last row. This conforms to the objective function 

shown in equation 2.4. The signs for the constraints (“rest”) are initially set in line 201, and then 

redefined in line 202 for the inputs using an “ifelse” construct. This line sets the constraint such 

that if the value in “varindex” for the column in question is equal to “1” the constraint sign is set 

to an equality (=), else it is set as an inequality (<=). Lines 215-216 initialize two variables that 

will hold the values of variable inputs returned by the model for each observation. 

Line 218-235 set values for each iteration of the loop that solves the DEA problem. First, 

the A matrix is reconfigured. Lines 219 and 220 set the value for columns J+1 and J+2 to be 

equal to negative one for either var3 or var4. Only one value in the column will be equal to 

negative one. Then, the negative value of the outputs is placed in column J+3 for observation j 

(line 221). The A matrix for observation one in our data is shown in Figure 6. The right hand 

side (rhs) values are set in line 222, with zero being inserted for the outputs, and the variable 

inputs being assigned the value zero using the “varindex” vector. Since “varindex” is equal to 

zero for the fixed inputs, they are set equal to their observed values in the rhs vector. The column 
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values for the LP model are then set in lines 224-226, and the objective function is set in line 

227. Line 230 stores the objective function values, while the values for the variable inputs 

returned by the model are stored in var1 and var2 in lines 232 and 233. Line 237 combines all 

the values returned by the DEA model into one data frame (results), which is then printed out on 

line 238. 

Results for the value of theta returned by the Johansen capacity model with VRS are 

shown in Figure nine (Appendix 2). Since the capacity model is less constrained than the output 

oriented TE model (VRS), the Johansen value will naturally be greater, or equal to the output 

oriented TE value. Additionally, figure 10 reports the values that are returned for the optimal 

level of the variable inputs needed to reach capacity output. These figures are important because 

they tell the firms how their use of variable inputs will need to be changed in order to reach 

capacity output. Note that in some instances (observation #2) less variable inputs are needed. 

3.0 The directional distance function (DDF) model 

The directional distance function (DDF) is a more generalized version of the previous 

distance function models used to calculate input and output oriented TE shown in prior sections 

(Färe and Grosskopf, 2006). It offers flexibility for a wide range of problems because the 

directional vector can easily be set to different values, allowing contraction or expansion of 

specific outputs and inputs. It has proved particularly useful for modelling environmental 

problems where pollution can be treated as an “undesirable” output and efficiency can then be 

measured in terms of increasing the “desirable” outputs, while simultaneously contracting the 

“undesirable” outputs. (Färe, et al., 2005, Färe, et al., 2011, Pasurka, 2006). Below, we present a 

DDF model which expands outputs, while simultaneously contracting inputs, along with the 

associated R code. We then modify the program by splitting the outputs into either “desirable” or 
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“undesirable” and setting up the model so that it expands “desirable” outputs, while contracting 

“undesirable” outputs. 

The directional distance function model with VRS, which expands outputs while 

simultaneously contracting inputs is constructed as: 

�@� RS, . ."(� ≥ �� + SUV (3.1) #(� ≤ �� − SU4!1(� = 1 
After re-arranging terms, the following formulation is equivalent: 

�@� RS, . ."(� − SUV ≥ �� 
(3.2) #(� + SU4 ≤ ��!1(� = 1 

In matrix form, model 3.2 is constructed as: 

��@�  +0′ 1- . / S�. ."′ −UV ≥ �� �                                                (3.3)  #′ U4 P . / >≤? >� ?S �=1′ 0 1� ≥ 0 
O

In all three models, the variables (g
y , gx ) are directional vectors, and a value needs to be 

chosen for each. For this example, we will set the values for the directional vectors equal to the 

observed values for each observation. This results in a multiplicative model where outputs are 

expanded by (1+β) and inputs contracted by (1-β). Other values for the directional vector, such 
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as (1,-1) could also have been chosen. A value of zero returned by the model indicates that the 

observation is efficient and no expansion of outputs or contraction of inputs can take place. A 

value greater than zero, for example 0.1, means that the firm is 90% efficient (1-β) and can 

expand outputs and contract inputs by 10%. Note that β is bounded above at one, since a value 

greater than one would contract inputs below zero. 

The R program needed to estimate model 3.3 is in Appendix 1 (program 5), and uses the 

same steps as shown in program 3 to read in the data and set up the initial A matrix. The 

difference between this program and previous programs begins on line 246, where the first loop 

of the DEA model is solved. Line 246 defines a matrix, “dy”, that holds the values of the outputs, 

and line 247 defines a matrix, “dx” to hold the values of the inputs. Because beta (β) is being 

used to both expand outputs, and contract inputs, it needs to act on both the outputs and inputs in 

the A matrix. These matrices are then inserted into the last column of the A matrix in line 248, 

with the values for dy being set to their negative, thus insuring the proper sign. The right hand 

side (rhs) value is then set to the values in the YX matrix, and the value one for the VRS 

constraint. This differs from the usual output (input) oriented TE model where the rhs values for 

the outputs (Y) (inputs, X) are set equal to zero. The program is then solved in line 255, and the 

objective values are stored in line 256. As stated previously, in order to calculate the measure of 

TE, the objective function values need to be subtracted from one. 

Results for our 10 observation data set are shown in figure nine (Appendix 2). The 

majority of values returned by the model are zero, meaning that outputs can’t be expanded while 

simultaneously contracting inputs. For those observations with values greater than one, the value 

yields the percentage that outputs should be expanded and inputs contracted to be placed on the 

efficient frontier. For example, observation two returned a value of .046. This means that in 
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order to be considered efficient, our output should be 1.046 times the observed output, and inputs 

should be 0.954 times the observed inputs (1-.046). 

3.1 The DDF model with desirable and undesirable outputs. 

One application for DDF models which has emerged in recent years have been models to 

estimate efficiency and other metrics for polluting industries (Färe, et al., 1989, Färe, et al., 2005, 

Färe, et al., 2006, Pasurka, 2006). In this type of DDF model, inputs are generally held constant 

and the model is constructed so as to measure efficiency in terms of expanding desirable outputs, 

and contracting undesirable outputs. The polluting output is considered an “undesirable” output. 

For example, an electric generating plant produces electricity, but also emissions such as sulfur 

dioxide, which is considered polluting, or “undesirable.” 

In order to estimate TE with both desirable and undesirable outputs, the outputs need to 

be separated into a vector of desirable (y) and undesirable outputs (u). Similar to the first ddf 

model presented above, the model expands desirable outputs, while contracting undesirable 

outputs, given the inputs. The ddf model for estimating TE is: 

�@� RS, 
( . . �" � − SUV ≥ � ( (3.4) W � + SUX = 7�#(� ≤ ��!1(� = 1 

In matrix form, the model is: 
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��@�  +0′ 1- . / S�. ."′ −U� �≥    ⎛W′ U ⎞ � = 7                      ⎛7  ⎞⎜ ⎟ . / < = S ≤ �#′ 0  =1′ 0 ⎝⎝ ⎠ 1 ⎠� ≥ 0 
(3.5) 

The R code to implement the ddf model for a 10 observation problem is found in program 

six (Appendix 1), and we present the program in its entirety. A different data set is used for this 

model because the data needs to contain both desirable and undesirable outputs. In this example, 

there are two desirable outputs (Y1,Y2), one undesirable output (U1), and four inputs (FX1, 

FX2, VX1,VX2). The data are read in on line 279 from a .csv file, and the X matrix is created 

with the data on inputs (line 283). Next, two Y matrices are created, one which holds the 

desirable outputs (YD), and the other which holds the undesirable (YU) outputs (lines 285-286). 

These are then joined together to create the single output matrix Y (line 287). Lines 289-90 

create two variables, MD and MU that contain the number of desirable outputs (MD) and 

undesirable outputs (MU) in the YD and YU matrices (two and one, respectively). Counters for 

the number of columns in the full Y and X matrices, along with the number of rows 

(observations) in X are created in lines 291-293. Finally, Y and X are joined together to form one 

YX matrix (line 294). 

Construction of the initial A matrix is consistent with the way it was constructed in all 

other programs (lines 298-300). Line 303 constructs the constraint vector, with the sign for the 

desirable outputs being set to “>=”, the undesirable output constraint is set to “=” to reflect that 

disposability is costly, the input constraint is set to “<=”, while the vrs constraint is set to “=”. 
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The remainder of the commands setting up the LP problem are found in lines 304-312. These 

commands did not differ from prior models presented above. 

The DDF model is solved in lines 330-335. The last column of the A matrix for each 

observation is set in lines 321-323. First, two matrices are initialized, one for the desirable 

outputs (dyd) and one for the undesirable outputs (dyu) (321-322). Column J+1 of the A matrix 

is then set to the negative vector of the desirable outputs and the positive vector of the 

undesirable outputs (line 323). This corresponds to the construction of the A matrix found in 

model 3.5 above. Figure 7 shows the A matrix used for solving the DDF program for the first 

observation. 

The rhs values for this model are equal to the observed values for each observation (line 

325). Lines 326-328 set values for the LP solver to use, and the model is solved in line 330. The 

objective function value is passed to the variable objvals1 in order to be printed later. The loop is 

closed in line 335 and the objective function values are printed in line 337. Note that the TE 

value will be equal to 1-objvals1. 

4.0 Bootstrapping DEA in R 

DEA models assume that all deviations from the production frontier are due to 

inefficiency, rather than noise or random deviations. This has led to a great deal of research to 

explore the statistical properties of the DEA estimator (Fried, et al., 2008, Simar, 1996, Simar 

and Wilson, 2000). Exploring all of the literature surrounding this topic is well beyond the scope 

of this paper, but one technique that has gained popularity for exploring the statistical properties 

of estimators resulting from DEA models is the bootstrap (Simar and Wilson, 2000). Below we 

present the R code for bootstrapping the output oriented TE model using a subsample bootstrap 
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procedure (Geyer, 2006). This is a straightforward approach to implement, and allows one to 

construct bias corrected mean values, along with confidence intervals for the DEA estimates. 

Program seven in Appendix 1 begins after solving the initial output oriented DEA model, 

where the results are stored in the dataframe objvals2 (line 342). The initial LP model is then 

deleted on the next line, and the bootstrap portion of the program begins on line 347. The first 

step in this portion of the program is to set a seed for the random draws using the “set.seed” 

command (line347). Next the value “n” is set equal to the number of observations in the data, a 

value “m” is initialized that will determine the size of the subsample bootstrap, and the variable 

B is set to 250 which is the number of bootstrap replicates (lines 348-350). Next, three new 

matrices are defined (lines 354-357). The first, “statusB” is designed to hold status codes from 

each bootstrap iteration and observation that tells whether the model solved. The second, “boot” 

will hold the objective function values for each bootstrap iteration and observation. The final 

matrix, “AB” is meant to hold the subsample of observations that are used for each bootstrap 

iteration. Note that the number of columns in the AB matrix is equal to the number of 

observations in the bootstrap sample (m) plus one (line 357). 

The next set of commands (lines 358-364) set up the LP problem to be solved in LP_API, 

and the actual bootstrap routine begins on line 366. Line 367 defines a variable “pickval” that is 

a vector of random integers of size “m” from the number of observations in the data (J). This will 

change for each iteration through the B loop. The AB matrix is populated on line 368 with the 

values from the A matrix that correspond to observations found in “pickval”. Recall that the A 

matrix was defined in the first part of the program to hold all the data from the transposed YX 

matrix. Lines 370-372 sets the rows for the LP problem using the set.row command. 
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Lines 374-384 run the LP model for each observation in the data. The first column in the 

AB matrix is set equal to the value of “s” which changes for each pass through the loop. This 

ensures that each observation in the data set will be evaluated against the observations contained 

in “pickval.” Note that “pickval” changes each time through the “B” loop as a new sample is 

drawn from the observations. Because this is an output oriented model, the outputs for column 

m+1 in the AB matrix are set equal to the negative of the output values found in column one 

(line 376). The right-hand side for the LP model is set in line 377, and the rest of the LP_B 

objects are set in lines 378-381, including the objective function. The LP model is solved (line 

382), and the objective function values are collected in the matrix “boot” (line 383). Line 384 

ends the loop for “s” which is all the observations in the data, while the “B” loop is closed at line 

388. Line 387 sets up a counter so the user knows what bootstrap iteration they are on. 

In order to calculate the bias corrected scores, the returns to scale (RTS) needs to be set 

(line 389). The value for the convergence rate “beta” used in the bias correction is set depending 

on whether the model is variable returns to scale (VRS), or constant returns to scale (CRS; lines 

391-392). Line 393 defines a matrix “S” to hold all the bias-corrected scores, while lines 396-

400 print out various statistics for the bias corrected scores. 
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37

38

Program 1. Input oriented TE with CRS 

#First Clear any previous data stored in memory, and require lpSolveAPI and readr 

rm(list=ls()) 

PKG <- c("lpSolveAPI", "readr") 

for (p in PKG) { 

if(!require(p,character.only = TRUE)) { 

install.packages(p) 

require(p,character.only = TRUE)} 

} 

#################################################################### 

#Beginning of Data Step 

#################################################################### 

setwd("~/John/joe/manual") #Set working directory to where data is stored. 

df0=read_csv("data1.csv") 

names(df0) 

################################################################### 

df0=df0[1:10,] 

# create input X matrix 

X=df0[,c("FX1","FX2","VX1","VX2")] 

# create output Y matrix 

Y=df0[,c("Y1")] 

################################################################### 

M=ncol(Y) 

N=ncol(X) 

J=nrow(X) 

YX=cbind(Y,X) 

################################################################### 

#End of DATA Step 

################################################################### 

A=matrix(0,M+N,J+1) 

#M+N is the number of inputs and outputs, J+1 sets the number of 

#columns equal to the the number of observations +1 

A[1:(M+N),1:J]=t(YX) 

#t is transpose operator, which turns rows into columns 

################################################################# 

#Next, set up LP Model 

################################################################# 

objtype='min' 
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obj=c(rep(0,J),1)  

#rest  defines  the  constraints  

rest=c(rep('>=',M),rep('<=',N))  

#nr  is  the  number  of  rows, n c  is  the  number  of  columns  

nr=nrow(A)   

nc=ncol(A)  

#LP_API  is  the  name  chosen  for  the  LP  problem  

LP_API=make.lp(nrow=nr,ncol=nc)  

lp.control(LP_API,sense='min')  

set.constr.type(LP_API,rest)  

 

for(i  in  1:nr){ 

  set.row(LP_API,i,A[i,])    #setting up rows  by  reading in  A  matrix  rows  

} 

objvals=0  

status=0 

#Begin  loop for  DEA  Program  

for(j  in  1:J){  

  A[(M+1):(M+N),J+1]=  -A[(M+1):(M+N),j]  #column  J+1 in  A  is  being set  to -obs  j  input  data  

  rhs=c(as.matrix(Y[j,]),rep(0,N))  #rhs  is  being set  to obs  j  output  data, a nd then  zero  for  inputs  

  set.rhs(LP_API,rhs)   

  set.column(LP_API,nc,A[,nc])  

  set.objfn(LP_API,obj)  

#status[j]  stores  the  solver  value  in  case  there  is  any  question  whether  the  program  solved for  

#a  specific  loop. O bjvals[j]  stores  the  objective  function  value  

  status[j]=solve(LP_API)  

  objvals[j]=get.objective(LP_API)  

 

  if(j%%100==0|j==J)   print(paste('on  dmu',j,'of',J))  #counter  to show  where  we  are  in  loop  

} 

# end loop   for(j  in  1;J)  

 

print(objvals)  
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73 Program  2.  Input  Oriented TE  Model  with  VRS  

#Define  A  Matrix.  M+N+1 rows  allows  for  VRS.   

A=matrix(0,M+N+1,J+1)  

#Next,  Transform  YX  matrix  and copy  to A.   

A[1:(M+N),1:J]=t(YX)  

#Now, s et  the  last  row  in  the  A  matrix  equal  to  1,  for  all  J  values  

#This  is  for  VRS.  

A[M+N+1,1:J]=1.0 

################################################################# 

#set  zero  for  all  J  columns,  plus  1 for  last  columns  

obj=c(rep(0,J),1)  

rest=c(rep('>=',M),rep('<=',N),'=')  

################################################################# 

nr=nrow(A)   

nc=ncol(A)  

LP_API=make.lp(nrow=nr,ncol=nc)  

lp.control(LP_API,sense='min')  

set.objfn(LP_API,obj)  

set.constr.type(LP_API,rest)  

for(i  in  1:nr){ 

  set.row(LP_API,i,A[i,])    #setting up rows  by  reading in  A  matrix  rows  

} 

##################################################################### 

objvals2=0  

status2=0 

for(j  in  1:J){  

  A[(M+1):(M+N),J+1]=-A[(M+1):(M+N),j]   

   #column  J+1 in  A  is  being set  to  the  negative  of  obs  j  input  data  

  rhs=c(as.matrix(Y[j,]),rep(0,N),1)  

74 
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111

#rhs is being set to obs j output data, and zero for input data, and 1 for VRS 

set.rhs(LP_API,rhs) 

set.column(LP_API,nc,A[,nc]) #loading revised input data into LPApi matrix 

set.objfn(LP_API,obj) 

status2[j]=solve(LP_API) 

objvals2[j]=get.objective(LP_API) 

if(j%%100==0|j==J) print(paste('on dmu',j,'of',J)) 

} 

print(objvals2) 

##################################################################### 
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112 Program  3.  Output  Oriented  TE  Model  with  VRS  

#Define  A  Matrix.  M+N+1 rows  allows  for  VRS.   

A=matrix(0,M+N+1,J+1)  

#Next,  Transform  YX  matrix  and copy  to A.   

A[1:(M+N),1:J]=t(YX)  

#Now, s et  the  last  row  in  the  A  matrix  equal  to  1,  for  all  J  values  

#This  is  for  VRS.  

A[M+N+1,1:J]=1.0 

################################################################# 

objtype='max' 

#set  zero  for  all  J  colums,  plus  1 for  last  column  

obj=c(rep(0,J),1)  

rest=c(rep('>=',M),rep('<=',N),'=')  

################################################################# 

nr=nrow(A)   

nc=ncol(A)  

LP_API=make.lp(nrow=nr,ncol=nc)  

lp.control(LP_API,sense=objtype)  

 

set.objfn(LP_API,obj)  

set.constr.type(LP_API,rest)  

 

for(i  in  1:nr){ 

    set.row(LP_API,i,A[i,])    #setting up rows  by  reading in  A  matrix  rows  

} 

 

objvals2=0  

status2=0 

113 

27 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

140 for(j  in  1:J){  

  A[1:M,J+1]=-A[1:M,j]  

  rhs=c(rep(0,M),as.matrix(X[j,]),1)   

  #rhs  is  being set  to obs  j  output  data, a nd J  input  data  from  X0,  and 1 for  VRS  

  set.rhs(LP_API,rhs)   

  set.column(LP_API,nc,A[,nc])  #loading revised input  data  into LPApi  matrix 

  set.objfn(LP_API,obj)  

 

  status2[j]=solve(LP_API)  

  objvals2[j]=get.objective(LP_API)  

 

  if(j%%100==0|j==J)   print(paste('on  dmu',j,'of',J))  

     

} # end loop    for(j  in  1:J)  

 

print(objvals2)  
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157 Program  4.  The  Johansen  Capacity M odel  

########################################################################## 

#R  Program  to  calculate  Johansen  capacity  model  

#Model  is  taken  from  "Production  Frontiers"  (1994)  by  Fare,  Grosskopf  and Lovell  

#################################################################### 

#First  Clear  any  previous  data  stored in  memory,  and require  lpSolveAPI  and readr  

rm(list=ls())  

PKG  <- c("lpSolveAPI",  "readr")  

for  (p in  PKG)  { 

  if(!require(p,character.only  =  TRUE))  {    

    install.packages(p)  

    require(p,character.only  =  TRUE)} 

} 

#################################################################### 

#Beginning of  Data  Step 

#################################################################### 

setwd("~/John/joe/manual")   #Set  working directory  to  where  data  is  stored.  

df0=read_csv("data1.csv")  

################################################################### 

df0=df0[1:10,]  

# create  input  X  matrix 

X=df0[,c("FX1","FX2","VX1","VX2")]  

varindex=c(0,0,1,1)  

var3=c(0,0,1,0)  

var4=c(0,0,0,1)  

# create  output  Y  matrix 

Y=df0[,c("Y1")]  

################################################################### 

(M=ncol(Y))  

(N=ncol(X))  
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207
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(J=nrow(X)) 

(NV=sum(varindex)) 

(NCX=N-NV) 

YX=cbind(Y,X) 

################################################################### 

#End of DATA Step 

#################################################################### 

A=matrix(0,M+N+1,J+1+NV) 

A[1:(M+N),1:J]=t(YX) 

A[M+N+1,1:J]=1.0 

################################################################# 

nr=nrow(A) 

nc=ncol(A) 

obj=c(rep(0,J+NV),1) 

rest=c(rep('>=',M),rep('<=',N),'=') 

rest[(M+1):(M+N)]=ifelse(varindex==1,'=','<=') 

LP_API=make.lp(nrow=nr,ncol=nc) 

lp.control(LP_API,sense='max') 

set.objfn(LP_API,obj) 

for(i in 1:nr){ 

set.row(LP_API,i,A[i,]) 

} 

set.constr.type(LP_API,rest) 

status2=0 

objvals2=0 

var1=0 

var2=0 
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229
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############################################################## 

for(j in 1:J){ 

A[(M+1):(M+N),J+1]=as.matrix(-var3) 

A[(M+1):(M+N),J+2]=as.matrix(-var4) 

A[1:M,J+3]=-A[1:M,j] 

rhs=c(rep(0,M),(1-varindex)*as.matrix(X[j,]),1) 

set.rhs(LP_API,rhs) 

set.column(LP_API,J+1,A[,J+1]) 

set.column(LP_API,J+2,A[,J+2]) 

set.column(LP_API,J+3,A[,J+3]) 

set.objfn(LP_API,obj) 

status2[j]=solve(LP_API) 

objvals2[j]=get.objective(LP_API) 

z=get.variables(LP_API) 

var1[j]=z[J+1] 

var2[j]=z[J+2] 

if(j%%100==0|j==J) print(paste('on dmu',j,'of',J)) 

} # end loop for(j in 1;J) 

results<-cbind(status2,objvals2,var1,var2) 

print(results) 
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240 Program  5.  The  Directional  Distance  Function  (DDF)  Model  

# run  DEA  loop  

objvals1=0  

status1=0 

 

for(j  in  1:J){  

  (dy=as.matrix(Y[j,]))  

  (dx=as.matrix(X[j,]))  

  A[1:(M+N),J+1]=c(-dy,dx)  

  

  rhs=c(as.matrix(YX[j,]),1)  

  set.rhs(LP_API,rhs)   

  set.column(LP_API,nc,A[,nc])  

  set.objfn(LP_API,obj)  

     

  status1[j]=solve(LP_API)  

  objvals1[j]=get.objective(LP_API)  

 

  if(j%%100==0|j==J)   print(paste('on  dmu',j,'of',J))  

} # end loop    for(j  in  1;J)  

print(objvals1)  
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262 Program  6.  DDF  model  with  desirable  and undesirable  outputs  

########################################################################## 

#R  Program  to  calculate  directional  distance  function  model  with  desirable  and  undesirable  outputs  

#Model  is  taken  from  "New  Directions:  Efficiency  and  Productivity"  (2004)  by  Fare  and  Grosskopf  

#################################################################### 

#First  Clear  any  previous  data  stored in  memory,  and require  lpSolveAPI  and readr  

rm(list=ls())  

PKG  <- c("lpSolveAPI",  "readr")  

for  (p in  PKG)  { 

  if(!require(p,character.only  =  TRUE))  {    

    install.packages(p)  

    require(p,character.only  =  TRUE)} 

} 

#################################################################### 

#Beginning of  Data  Step 

#################################################################### 

setwd("~/John/joe/manual")   #Set  working directory  to  where  data  is  stored.  

df0=read_csv("ddf_example.csv")  

################################################################### 

df0=df0[1:10,]  

# create  input  X  matrix 

X=df0[,c("FX1","FX2","VX1","VX2")]  

# create  output  Y  matrix 

YD=df0[,c("Y1","Y2")]        #Desireable  Outputs  

YU=df0[,c("U1")]             #Undesirable  Outputs  

Y=cbind(YD,YU)               #column  bind YD  and YU  

################################################################### 

(MD=ncol(YD))  

(MU=ncol(YU))  
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(M=ncol(Y))  

(N=ncol(X))  

(J=nrow(X))  

YX=cbind(Y,X)  

################################################################### 

#End of  DATA  Step  

#################################################################### 

A=matrix(0,M+N+1,J+1)  

A[1:(M+N),1:J]=t(YX)  

(A[(M+N+1),1:J]=rep(1,J))  

##End of  A  Matrix  build############################################# 

obj=c(rep(0,J),1)  

rest=c(rep('>=',MD),rep('=',MU),  rep('<=',N),'=')  

nr=nrow(A)   

nc=ncol(A)  

LP_API=make.lp(nrow=nr,ncol=nc)  

lp.control(LP_API,sense='max')  

set.objfn(LP_API,obj)  

 

for(i  in  1:nr){ 

  set.row(LP_API,i,A[i,])  

} 

 

set.constr.type(LP_API,rest)  

##################################################################### 

# run  loop  

objvals1=0  

status1=0 
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for(j  in  1:J){  

  dyd=as.matrix(YD[j,])  

  dyu=as.matrix(YU[j,])  

  A[1:M,J+1]=c(-dyd,dyu)  

  

  rhs=c(as.matrix(Y[j,]),as.matrix(X[j,]),1)  

  set.rhs(LP_API,rhs)   

  set.column(LP_API,nc,A[,nc])  

  set.objfn(LP_API,obj)  

    

  status1[j]=solve(LP_API)  

  objvals1[j]=get.objective(LP_API)  

 

  if(j%%100==0|j==J)   print(paste('on  dmu',j,'of',J))  

     

} # end loop    for(j  in  1;J)  

 

print(objvals1)  
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Program  7.  Bootstrap Output  Oriented TE  Model  

#First, r un  initial  output  oriented DEA  program  and save  results,  then 

#delete  the  initial  lp model  – LP_API  

objvals2[j]=get.objective(LP_API)  

delete.lp(LP_API)  

################################################################ 

# bootstrap DEA  Model  using lpSolveAPI  

################################################################# 

set.seed(1001)  

(n=J)  

(m=round(sqrt(n),0))  

B=250  

############################ 

# B=number  of  bootstraps  

############################ 

statusB=matrix(NA,B,n)  

boot=matrix(NA,B,n)  

########################### 

AB=matrix(0,M+N+1,m+1)  

objB=c(rep(0,m),1)  

########################### 

ncB=ncol(AB)  

LP_B=make.lp(nrow=nr,ncol=ncB)  

lp.control(LP_B,sense=objtype)  

set.objfn(LP_B,objB)  

set.constr.type(LP_B,rest)  

 

for(b  in  1:B){  
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    pickval=sample(1:J,m)  

    AB[,1:m]=A[,pickval]  

    

    for(i  in  1:nrB){ 

    set.row(LP_B,i,AB[i,])  

    }  

 

  for(s  in  1:J){ 

      (AB[,1]=A[,s])  

      AB[1:M,m+1]=-AB[1:M,1]  

      rhsB=c(rep(0,M),(AB[(M+1):(N+1)]),1)  

      set.rhs(LP_B,rhsB)   

      set.column(LP_B,1,AB[,1])  

      set.column(LP_B,ncB,AB[,ncB])  

      set.objfn(LP_B,objB)  

      statusB[b,s]=solve(LP_B)  

      boot[b,s]=get.objective(LP_B)  

   }# end loop  for  (s  in  1:J)  

#The  next  line  prints  to the  screen  which  iteration  of  the  bootstrap  

#is  being calculated 

  if(b%%1==0|b==B)   print(paste('on  bootstrap rep',b,'of',B))    

} # end loop  on  b################# 

RTS='VRS' 

# construct  the  "S"  matrix 

if(RTS=='CRS'|RTS=='crs')  (beta=2/(M+N))  

if(RTS=='VRS'|RTS=='vrs')  (beta=2/(M+N+1))  

S=matrix(0,B,n)  

  for(s  in  1:J)  S[,s]=objvals2[s]-((m/n)^beta)*(boot[,s]-objvals2[s])  
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395

396

397

398

399

400

401

mean(objvals2) #Calculates mean TE score for initial DEA Model 

mean(S) #Calculates mean TE score across all bootstrap runs 

quantile(S,0.025) #Calculates lower 2.5% tail of bootstrap scores 

quantile(S, 0.5) #Calculates median of bootstrap scores 

quantile(S, 0.975) #calculates upper 2.5% tail of bootstrap scores 
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Y1 FX1 FX2 VX1 VX2 

9 

16 

18180 97 859 8 

17675 70 369 7 

14595 64 505 7 22 

18180 93 756 7 10 

18180 71 303 6 9 

18167 85 1182 8 9 

30906 70 606 8 23 

17850 64 359 7 12 

17170 95 516 8 15 

17776 76 687 8 9 

Figure 1. YX matrix for DEA program 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

0 

0 

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776 

97 70 64 93 71 85 70 64 95 76 

859 369 505 756 303 1182 606 359 516 687 0 

8 7 7 7 6 8 8 7 8 8 0 

9 16 22 10 9 9 23 12 15 9 0 

Figure 2. Initial A matrix for DEA program after inserting values from YX matrix. 
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 V1  V2  V3  V4  V5  V6  V7  V8  V9  V10  V11 

18180  17675  14595  18180  18180  18167  30906  17850  17170  17776   0 

 97  70  64  93  71  85  70  64  95  76  -97 

859  369  505  756  303  1182  606  359  516  687  -859  

 8  7  7  7  6  8  8  7  8  8  -8 

 9  16  22  10  9  9  23  12  15  9  -9 

 

 

 

                

  

Figure 3. Final A matrix for solving input oriented TE model with CRS for DMU 1. 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

0 

-97 

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776 

97 70 64 93 71 85 70 64 95 76 

859 369 505 756 303 1182 606 359 516 687 -859 

8 7 7 7 6 8 8 7 8 8 -8 

9 16 22 10 9 9 23 12 15 9 -9 

1 1 1 1 1 1 1 1 1 1 0 

Figure 4. Final A matrix for solving input oriented TE model with variable returns to scale for DMU 1. 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

-18180 

0 

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776 

97 70 64 93 71 85 70 64 95 76 

859 369 505 756 303 1182 606 359 516 687 0 

8 7 7 7 6 8 8 7 8 8 0 

9 16 22 10 9 9 23 12 15 9 0 

1 1 1 1 1 1 1 1 1 1 0 

Figure 5. Final A matrix for solving output oriented TE problem with variable returns to scale for DMU 1. 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 

18180 17675 14595 18180 18180 18167 30906 17850 17170 17776 0 0 -18180 

97 70 64 93 71 85 70 64 95 76 0 0 0 

859 369 505 756 303 1182 606 359 516 687 0 0 0 

8 7 7 7 6 8 8 7 8 8 -1 0 0 

9 16 22 10 9 9 23 12 15 9 0 -1 0 

1 1 1 1 1 1 1 1 1 1 0 0 0 

Figure 6. Initial A matrix for Johansen plant capacity model observation 1. 
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11  
 1  2913  7721  6080  3315  19212  22516  14188  3350  4193  753  -2913 

 2  3044  7972  10667  4005  508  10881  12655  8678  11153  4443  -3044 

 3  2458  3093  1810  18  814  5464  501  1604  9764  867  2458 

 4  88  117  92  74  107  95  87  79  77  82  0 

 5  682  1518  1100  451  1034  935  468  572  572  528  0 

 6  4  6  5  4  7  6  5  6  5  6  0 

 7  6  11  8  6  9  10  13  11  11  6  0 

 8  1  1  1  1  1  1  1  1  1  1  0 

 

             

  

Figure 7. A matrix for ddf model with one undesirable output, observation one. 
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Appendix 2. Data used and Results from sample DEA programs 
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DMU Output 

Fixed Input 

1 

Fixed Input 

2 

Variable 

Input 1 

Variable 

Input 2 

1 18180 97 859 8 9 

2 17675 70 369 7 16 

3 14595 64 505 7 22 

4 18180 93 756 7 10 

5 18180 71 303 6 9 

6 18167 85 1182 8 9 

7 30906 70 606 8 23 

8 17850 64 359 7 12 

9 17170 95 516 8 15 

10 17776 76 687 5 9 

Figure 8. Outputs and inputs for 10 observations used in DEA examples 

DMU Input Oriented 

TE (CRS) 

Input Oriented 

TE (VRS) 

Output 

Oriented TE 

(VRS) 

Johansen 

Capacity 

Model (VRS) 

DDF Model 

(VRS) 

1 1.000 1.000 1.000 1.700 0.000 

2 0.846 0.950 1.168 1.168 0.046 

3 0.557 1.000 1.223 1.223 0.000 

4 0.900 0.900 1.050 1.700 0.033 

5 1.000 1.000 1.000 1.000 0.000 

6 0.999 1.000 1.001 1.701 0.000 

7 1.000 1.000 1.000 1.000 0.000 

8 0.894 1.000 1.000 1.000 0.000 

9 0.659 0.750 1.376 1.580 0.202 

10 0.978 1.000 1.023 1.739 0.000 

Figure 9. Results from five DEA models using data from 10 observations. 
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Observation Optimal Variable 

Input 1 

Optimal Variable 

Input 2 

1 8.000 23.000 

2 6.518 12.097 

3 7.000 12.000 

4 8.000 23.000 

5 6.000 9.000 

6 8.000 23.000 

7 8.000 23.000 

8 7.000 12.000 

9 7.406 18.842 

10 8.000 23.000 

Figure 10. Optimal levels of variable inputs from Johansen capacity model. 
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